Feuille d'exercice n° 13 : **Intégrales dépendant d'un** paramètre

I. Continuité, limites

Exercice 1 Soit $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$.

- 1) Domaine de définition de f?
- 2) f est-elle continue sur D_f ?
- 3) Montrer que $x \in D_f \Rightarrow 1 x \in D_f$ et f(1 x) = f(x).
- 4) Trouver un équivalent de f en chacune des bornes de D_f .

Exercice 2 Trouver un équivalent simple de $I(x) = \int_0^{+\infty} \frac{\sin(xt)}{1+t^4} dt$, lorsque $x \longrightarrow 0^+$.

II. Dérivation

Exercice 3 ()

- 1) Montrer que $g(x) = \int_0^{+\infty} \frac{1 \cos(xt)}{t^2} e^{-t} dt$ est définie sur \mathbb{R} .
- 2) Montrer que g est \mathscr{C}^2 et calculer g''.
- **3)** Montrer que $g(x) = x \arctan x \frac{1}{2} \ln(1 + x^2)$.

Exercice 4 Soit f la fonction définie par $f(x) = \int_0^{\pi/2} \sin^x(t) dt$.

- 1) Montrer que f est définie et positive sur $]-1,+\infty[$.
- 2) Montrer que f est \mathscr{C}^1 et préciser sa monotonie.
- 3) Former une relation entre f(x+2) et f(x) pour tout x > -1.
- 4) On pose pour x > 0,

$$\varphi(x) = xf(x)f(x-1)$$

Montrer que

$$\forall x > 0, \varphi(x+1) = \varphi(x)$$

Calculer $\varphi(n)$ pour $n \in \mathbb{N}^*$.

- 5) Déterminer un équivalent à f en $+\infty$.
- 6) Déterminer un équivalent à f en -1^+ .

Exercice 5 Soit $\alpha \in \mathbb{R}_+^*$. Soit $I(\alpha) = \int_0^1 \frac{x^{\alpha-1}}{1+x} dx$. Montrer que I est définie et de classe \mathscr{C}^1 sur]0,1[. Écrire $I(\alpha)$ comme somme de série.

Exercice 6 (%) Calculer $g(x) = \int_0^1 \frac{t^x - 1}{\ln t} dt$ avec $x \in]-1, +\infty[$.

Exercice 7 (**Solution**) Soit f de classe \mathscr{C}^p , avec $p \ge 1$, sur un intervalle I de \mathbb{R} , à valeurs réelles ou complexes. Soit $a \in I$, on suppose f(a) = 0. Montrer qu'il existe g de classe \mathscr{C}^{p-1} sur I telle que

$$\forall x \in I \quad f(x) = (x - a)g(x).$$

Indication : écrire $f(x)=f(a)+\int_a^x f'(t)\,\mathrm{d}t$ puis faire un changement de variable dans l'intégrale.

Exercice 8 Soit

$$f(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$$

Domaine de définition? La fonction f est-elle continue? de classe \mathscr{C}^1 ? Calculer la dérivée de f, puis f. Calculer $\int_0^{+\infty} \left(\frac{\arctan t}{t}\right)^2 dt$

Exercice 9 (\bigcirc) Existence et calcul éventuel de $\int_0^{+\infty} \frac{e^{-t} \sin(tx)}{t} dt$.

III. Équations différentielles

Exercice 10 ($^{\sim}$) Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$.

- 1) Montrer que f est une solution sur \mathbb{R}_+^* de l'équation différentielle $y''+y=\frac{1}{x}.$
- 2) Montrer que c'est la seule solution de cette équation différentielle qui est de limite nulle en $+\infty$.

Exercice 11 (\bigcirc) On rappelle que l'intégrale de Gauß, que l'on note G, vaut $G = \int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

- 1) Calculer $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$.
- 2) Donner les fonctions de classe \mathscr{C}^1 de \mathbb{R} dans \mathbb{C} vérifiant : $\forall x \in \mathbb{R}$, $f'(x) = -\frac{i}{2(ix-1)}f(x)$.
- 3) Montrer l'existence et donner l'expression (sans signe intégrale) de $u(x) = \int_0^{+\infty} \frac{e^{-t}\cos(xt)}{\sqrt{t}} dt$ et $v(x) = \int_0^{+\infty} \frac{e^{-t}\sin(xt)}{\sqrt{t}} dt$

Exercice 12 (%)

- 1) Étudier $J(x) = \int_0^{+\infty} \frac{e^{-t}e^{itx}}{\sqrt{t}} dt$.
- 2) À l'aide d'une intégration par parties, déterminer une équation différentielle linéaire d'ordre 1 vérifiée par J et en déduire une forme simplifiée de J(x) (on rappelle que $\int_0^{+\infty} \mathrm{e}^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}$).

