Feuille d'exercice n° 1-19 : **Révisions par monts et** collines

I. Séries

Exercice 1 (\blacktriangle) Nous voulons déterminer la nature de la série de terme général $u_n = n! \prod_{k=1}^n \ln\left(1 + \frac{x}{k+1}\right)$, avec x > 0.

- 1) Donner la nature de cette série dans le cas où $x \neq 1$.
- 2) On suppose maintenant que x = 1.
 - a) Montrer que pour tout n, $u_n = \frac{1}{n+1} \prod_{k=2}^{n+1} \left(k \ln \left(1 + \frac{1}{k} \right) \right)$.
 - **b)** Donner un DL de $\ln\left(k\ln\left(1+\frac{1}{k}\right)\right)$ en $\mathcal{O}\left(\frac{1}{k^2}\right)$.
 - c) En déduire que $\ln u_n = -\ln(n+1) \frac{1}{2} \sum_{k=2}^{n+1} \frac{1}{k} + \mathcal{O}(1)$.
 - **d)** Montrer que $\ln u_n = -\frac{3}{2}\ln(n+1) + \mathcal{O}(1)$.
 - e) Conclure.

II. Intégrales généralisées

Exercice 2 (\blacktriangle) [Irrationalité du nombre π]

1) Pour $a,b \in \mathbb{N}^*$, montrer que la fonction polynomiale $P_n(x) = \frac{1}{n!}x^n(bx-a)^n$ et ses dérivées successives prennent en 0 et en $\frac{a}{b}$ des valeurs entières.

Pour calculer $P_n^{(m)}$, on distinguera les cas m < n, $n \le m \le 2n$ et 2n < m, et on utilisera la formule de Leibniz.

- 2) Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{\pi} P_n(t) \sin t \, dt$. Montrer que $I_n \to 0$.
- 3) Grâce à une succession d'IPP montrer que $I_n = \left[\sum_{k=1}^{2n+1} (-1)^{k-1} \sin(t+k\pi/2) P_n^{(k-1)}(t)\right]_0^{\pi}$.
- 4) En supposant $\pi = \frac{a}{b}$, montrer que $I_n \in \mathbb{Z}$ et conclure.

Exercice 3 (A)

Soient $\alpha > 0$ et $f \in \mathcal{C}^0([1, +\infty[, \mathbb{R}_+^*)])$.

- 1) On suppose que f est intégrable sur $[1, +\infty[$. On pose $R(x) = \int_x^{+\infty} f(t) dt$ pour $x \ge 1$. Nous souhaitons étudier l'intégrabilité de g : $x \mapsto \frac{f(x)}{R(x)^{\alpha}}$ sur $[1, +\infty[$.
 - a) Montrer que R est de classe \mathscr{C}^1 sur $[1,+\infty[$, de dérivée -f et que $\lim_{x\to+\infty}R(x)=0.$
 - b) En déduire une primitive de g, en distinguant les cas $\alpha=1$ et $\alpha\neq 1$.
 - c) Conclure.
- 2) On suppose que f n'est pas intégrable sur $[1, +\infty[$. On pose $S(x) = \int_1^x f(t) dt$ pour $x \ge 1$. Étudier l'intégrabilité de $h: x \mapsto \frac{f(x)}{S(x)^{\alpha}}$ sur $[2, +\infty[$.

III. Suites de fonctions

Exercice 4 (\blacktriangle) On définit $(u_n)_n$ suite de fonctions définies sur [0,1] par :

$$u_0(x) = 1$$
 et $u_{n+1}(x) = 1 + \int_0^x u_n(t - t^2) dt$.

1) Par récurrence, montrer que, pour tout $x \in [0,1]$:

$$0 \leqslant u_{n+1}(x) - u_n(x) \leqslant \frac{x^{n+1}}{(n+1)!}$$

- 2) Montrer que pour tout n et x, $|u(x) u_n(x)| = \left| \sum_{k=n+1}^{+\infty} (u_k(x) u_{k-1}(x)) \right|$.
- 3) En déduire, pour tout $x \in [0,1]$, la convergence de la suite $(u_n(x))_n$.
- 4) Établir que la suite $(u_n)_n$ converge uniformément vers une fonction u non nulle.
- **5)** Montrer que $\forall x \in [0,1], \int_0^x u_n\left(t-t^2\right) dt \xrightarrow[n \to +\infty]{} \int_0^x u\left(t-t^2\right) dt.$
- **6)** Montrer que $u'(x) = u(x x^2)$

IV. Réduction

Exercice 5 (\blacktriangle) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^2 - 2A$ est diagonalisable et 1 n'est pas valeur propre de A. Nous voulons montrer que A est diagonalisable.

- 1) Montrer qu'il existe des complexes $\lambda_1, \dots, \lambda_r$ deux à deux distincts tels que $R = \prod_{i=1}^r (X^2 2X \lambda_i)$ est un polynôme annulateur de A.
- 2) Montrer qu'aucun des λ_i ne vaut -1.
- 3) En déduire que R est scindé à racines simples et conclure.

V. Séries de fonctions

Exercice 6 (\blacktriangle) On note, pour tout $n \in \mathbb{N}$:

$$f_n: [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{(-1)^n}{\sqrt{1+nx}}.$$

1) Montrer que $\sum_{n\geqslant 1} f_n$ converge simplement sur $]0,+\infty[$ et converge uniformément sur $[1,+\infty[$.

On note S la somme.

- **2)** Montrer : $S(x) \xrightarrow[x \to +\infty]{} 0$.
- **3)** Notons, pour tout $n \in \mathbb{N}^*$, $g_n : [1; +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{(-1)^n}{\sqrt{nx}}]$. Montrer que pour tout $x \in [1, +\infty[, |f_n(x) - g_n(x)| \leqslant \frac{1}{2x^{3/2}} \frac{1}{n^{3/2}}]$.
- 4) On note $a = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$. Établir : $S(x) = \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x\sqrt{x}}\right)$.

VI. Séries entières

Exercice 7 ()

- 1) Soient $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$, et $a \in \mathbb{R}$ tel que f(a) = 0. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $f^{(n)}(a) \neq 0$.
 - a) Montrer qu'il existe $\eta > 0$ assez petit, tel que $\forall x \in [a \eta, a + \eta]$, $\left| f(x) \frac{f^{(n)}(a)}{n!} (x a)^n \right| \leqslant \frac{\left| f^{(n)}(a) \right|}{2n!} |x a|^n$.
 - **b)** En déduire que a est isolé c'est-à-dire qu'il existe h > 0 tel que $\forall y \in]a h, a + h[\setminus \{a\}, f(y) \neq 0.$
- 2) En déduire que si f est non nulle et développable en série entière autour de chaque point sur \mathbb{R} , alors les zéros de f sont isolés.
- 3) La fonction $f: x \in \mathbb{R} \mapsto \begin{cases} e^{-\frac{1}{x^2}} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ est-elle développable en série entière en 0?

VII. Espérance, variance, covariance

Exercice 8 ($\stackrel{\longleftarrow}{}$) On joue à Pile ou Face ; la probabilité d'obtenir Pile est p, celle d'obtenir Face est 1-p. On appellera **séquence** une suite de tirages consécutifs identiques précédés et suivis de tirages différents. Voici deux issues :

Dans la première issue, la première séquence est P, la seconde est FF. Dans la deuxième issue, la première séquence est FFF, la seconde est P.

- 1) On note L_1 la longueur de la première séquence, et X_i la variable aléatoire égale à 1 si le ième lancer donne Pile, égale à 0 sinon.
 - a) Donner la loi de L_1 .
 - b) Donner l'espérance de L_1 .
 - c) Donner la variance de L_1 , en commençant par calculer $E(L_1(L_1-1))$.
- 2) On note L_2 la longueur de la deuxième séquence.
 - a) Calculer la loi conjointe de (L_1, L_2) .
 - **b)** Donner la loi de L_2 .
 - c) Donner l'espérance de L_2 .
 - d) Donner la variance de L_2 .
- 3) a) Montrer que pour tout $x \in \mathbb{R}_+^*$, $x^2 + \frac{1}{x^2} \geqslant x + \frac{1}{1}x$.
 - **b)** Montrer que $E(L_1) \ge E(L_2)$ et $V(L_1) \ge V(L_2)$.
- 4) Calculer $Cov(L_1, L_2)$.
- 5) Calculer $\lim_{m\to+\infty} P_{[L_1=m]} (L_2=n)$.

VIII. Espace vectoriels préhilbertiens et euclidiens

Exercice 9 (\blacktriangle) Soit E un espace préhilbertien. Pour x_1, \ldots, x_p des vecteurs de E, on appelle matrice de Gram la matrice de $\mathscr{M}_p(\mathbb{R})$ définie par $(\langle x_i, x_j \rangle)_{i,j}$. On appelle déterminant de Gram des vecteurs x_1, \ldots, x_p , et on note $G(x_1, \ldots, x_p)$, le déterminant de cette matrice.

- 1) Nous voulons montrer que (x_1, \ldots, x_p) est une famille libre si et seulement si $G(x_1, \ldots, x_p) \neq 0$.
 - a) On suppose que (x_1, \ldots, x_p) est une famille liée. Alors il existe j tel que le j-ième vecteur est combinaison linéaire des autres. En déduire que les colonnes de la matrice de Gram sont donc liées.
 - **b)** Supposons que $G(x_1,\ldots,x_p)=0$.
 - i) Montrer qu'il existe des scalaires $\lambda_1, \lambda_2, \dots, \lambda_p$ non tous nuls tels que, pour tout $i = 1, \dots, p$, on a $\langle \lambda_1 x_1 + \dots + \lambda_p x_p, x_i \rangle = 0$.
 - ii) En déduire que $\|\lambda_1 x_1 + \cdots + \lambda_p x_p\|^2 = 0$ et conclure.
- **2)** On suppose désormais que (x_1, \ldots, x_p) est une famille libre, et on note $F = \text{vect}(x_1, \ldots, x_p)$. Soit également $x \in E$, que l'on écrira x = u + v avec $u \in F$ et $v \in F^{\perp}$. Démontrer que

$$d(x,F)^{2} = \frac{G(x,x_{1},\ldots,x_{p})}{G(x_{1},\ldots,x_{p})}.$$