Semaine 15 du 27 janvier 2025 (S5)

XIII - Intégrales à paramètre

Le chapitre XIII reste au programme :

1 Cadre

- 1.1 Fonctions dont la variable intervient dans les bornes d'une intégrale (et pas ailleurs)
- 1.2 Fonctions définies par une intégrale, dont la variable n'intervient pas dans les bornes
- 1.3 Et si la variable intervient à la fois dans les bornes et dans l'intégrande?

2 Continuité

- 2.1 Théorème de continuité par domination
- 2.2 Limite

3 Dérivation

- 3.1 Rappels de première année : dérivées partielles
- 3.2 Dérivation par domination
- 3.3 Dérivées d'ordres supérieurs

4 Exercices à connaître

4.1 La fonction Γ (banque CCINP MP)

On pose: $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$.

1) Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x, t)$ est intégrable sur $]0, +\infty[$.

On pose alors :
$$\forall x \in]0, +\infty[$$
, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 2) Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3) Démontrer que Γ est de classe \mathscr{C}^1 sur $]0,+\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

4.2 Produit de convolution

On note E le \mathbb{C} -espace vectoriel des fonctions continues sur $\mathbb{R}, 2\pi$ périodiques, à valeurs complexes. On munit E de la norme N_{∞} .

On étudie la loi * qui, à deux fonctions f et g de E, fait correspondre la fonction f * g définie par

$$\forall x \in \mathbb{R}, \ (f * g)(x) = \int_{-\pi}^{\pi} f(x - t)g(t)dt$$

et appelée produit de convolution de <math>f et g.

- 1) Montrer qu'une fonction continue périodique est bornée.
- 2) Démontrer que la fonction f * g est définie sur \mathbb{R} , bornée et donner un majorant de $N_{\infty}(g * f)$ en fonction de $N_{\infty}(f)$ et $N_{\infty}(g)$.
- 3) Démontrer que * est une loi de composition interne sur E.
- 4) Montrer que la fonction f * g est égale à la fonction g * f.
- **5)** Soit $k, l \in \mathbb{Z}$, $e_k : t \mapsto e^{ikt}$ et $e_l : t \mapsto e^{ilt}$. Calculer $e_k * e_l$.

4.3 L'intégrale de Gauss

Soient $f(x) = \left(\int_0^x e^{-t^2} dt\right)^2$ et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1) Montrer que f et g sont de classe \mathscr{C}^1 sur \mathbb{R}^+ et déterminer leur dérivée.
- 2) Montrer que pour tout $x \ge 0$, on a $f(x) + g(x) = \frac{\pi}{4}$.
- 3) En déduire $I = \int_0^{+\infty} e^{-t^2} dt$.

4.4 Transformée de Laplace et intégrale de Dirichlet

On utilisera directement ici que l'intégrale généralisée $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

On définit, si $s \in \mathbb{R}_+$,

$$F(s) = \int_0^{+\infty} e^{-st} \frac{\sin(t)}{t} dt.$$

- 1) Montrer que F est bien définie sur \mathbb{R} , et est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 2) Calculer F(s) pour $s \in \mathbb{R}_+^*$.
- 3) Montrer que F est continue en 0.
- 4) Déduire de ce qui précède la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

S'y ajoute:

XIV - Espérance, variance, covariance etc

1 Espérance

- 1.1 Définition
- 1.2 Propriétés
- 1.3 Formule de transfert
- 1.4 Variables indépendantes
- 1.5 Lois usuelles
- 2 Variance
- 2.1 Définition
- 2.2 Propriétés
- 2.3 Lois usuelles

3 Covariance

!! Les sections sur les inégalités probabilistes (Markov & co) ainsi que les fonctions génératrices ne seront au programme que la semaine prochaine!!

4 Exercices à connaître

4.1 Calculs d'espérance et de variance (banque CCINP MP)

Une secrétaire effectue, une première fois, un appel téléphonique vers n correspondants distincts.

On admet que les n appels constituent n expériences indépendantes et que, pour chaque appel, la probabilité d'obtenir le correspondant demandé est p $(p \in]0,1[)$.

Soit X la variable aléatoire représentant le nombre de correspondants obtenus.

- 1) Donner la loi de X. Justifier.
- 2) La secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n-X correspondants qu'elle n'a pas pu joindre au cours de la première série d'appels. On note Y la variable aléatoire représentant le nombre de personnes jointes au cours de la seconde série d'appels.
 - a) Soit $i \in [0, n]$. Déterminer, pour $k \in \mathbb{N}$, $P_{(X=i)}(Y = k)$.
 - b) Prouver que Z = X + Y suit une loi binomiale dont on déterminera le paramètre.

Indication : on pourra utiliser, sans la prouver, l'égalité suivante : $\binom{n-i}{k-i}\binom{n}{i} = \binom{k}{i}\binom{n}{k}$.

c) Déterminer l'espérance et la variance de Z.

4.2 Un couple de variables aléatoires (banque CCP MP)

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} .

On suppose que la loi du couple (X,Y) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ P((X=i) \cap (Y=j)) = \frac{1}{e \ 2^{i+1} j!}$$

- 1) Déterminer les lois de X et de Y.
- 2) a) Prouver que 1 + X suit une loi géométrique et en déduire l'espérance et la variance de X.
 - b) Déterminer l'espérance et la variance de Y.
- 3) Les variables X et Y sont-elles indépendantes?
- 4) Calculer P(X = Y).